近刊検索 デルタ

2019年8月8日発売

講談社

ベイズ深層学習

機械学習プロフェッショナルシリーズ
このエントリーをはてなブックマークに追加
内容紹介
「読んでいて本当に心地がいい」と大好評の前著『ベイズ推論による機械学習入門』からの第2弾! 

「深層学習とベイズ統計の融合」がすべて詰まった 「欲張り」本! 
基礎からはじめ、深層生成モデルやガウス過程とのつながりまでをていねいに解説した。本邦初の成書!

本書のサポートページ:
https://github.com/sammy-suyama/BayesianDeepLearningBook

【主な内容】
第1章 はじめに
1.1 ベイズ統計とニューラルネットワークの変遷
1.2 ベイズ深層学習

第2章 ニューラルネットワークの基礎
2.1 線形回帰モデル
2.2 ニューラルネットワーク
2.3 効率的な学習法
2.4 ニューラルネットワークの拡張モデル

第3章 ベイズ推論の基礎
3.1 確率推論
3.2 指数型分布族
3.3 ベイズ線形回帰
3.4 最尤推定,MAP推定との関係

第4章 近似ベイズ推論
4.1 サンプリングに基づく推論手法
4.2 最適化に基づく推論手法

第5章 ニューラルネットワークのベイズ推論
5.1 ベイズニューラルネットワークモデルの近似推論法
5.2 近似ベイズ推論の効率化
5.3 ベイズ推論と確率的正則化
5.4 不確実性の推定を使った応用

第6章 深層生成モデル
6.1 変分自己符号化器
6.2 変分モデル
6.3 生成ネットワークの構造学習
6.4 その他の深層生成モデル

第7章 深層学習とガウス過程
7.1 ガウス過程の基礎
7.2 ガウス過程による分類
7.3 ガウス過程のスパース近似
7.4 深層学習のガウス過程解釈
7.5 ガウス過程による生成モデル
目次
第1章 はじめに
1.1 ベイズ統計とニューラルネットワークの変遷
1.2 ベイズ深層学習

第2章 ニューラルネットワークの基礎
2.1 線形回帰モデル
2.2 ニューラルネットワーク
2.3 効率的な学習法
2.4 ニューラルネットワークの拡張モデル

第3章 ベイズ推論の基礎
3.1 確率推論
3.2 指数型分布族
3.3 ベイズ線形回帰
3.4 最尤推定,MAP推定との関係

第4章 近似ベイズ推論
4.1 サンプリングに基づく推論手法
4.2 最適化に基づく推論手法

第5章 ニューラルネットワークのベイズ推論
5.1 ベイズニューラルネットワークモデルの近似推論法
5.2 近似ベイズ推論の効率化
5.3 ベイズ推論と確率的正則化
5.4 不確実性の推定を使った応用

第6章 深層生成モデル
6.1 変分自己符号化器
6.2 変分モデル
6.3 生成ネットワークの構造学習
6.4 その他の深層生成モデル

第7章 深層学習とガウス過程
7.1 ガウス過程の基礎
7.2 ガウス過程による分類
7.3 ガウス過程のスパース近似
7.4 深層学習のガウス過程解釈
7.5 ガウス過程による生成モデル
著者略歴
須山 敦志(スヤマ アツシ suyama atsushi)
2009年 東京工業大学工学部情報工学科卒業 2011年 東京大学大学院情報工学研究科博士前期課程修了 国内メーカーの研究職、UKのベンチャー企業の研究職を経て、現在はデータ解析に関するコンサルティングに従事。 ブログ「作って遊ぶ機械学習。」にて実践的な機械学習技術に関する情報を発信中。 twitter ID:@sammy_suyama 著書:『ベイズ推論による機械学習入門』講談社
タイトルヨミ
カナ:ベイズシンソウガクシュウ
ローマ字:beizushinsougakushuu

※近刊検索デルタの書誌情報はopenBDのAPIを使用しています。

講談社の既刊から
堂場瞬一/著
斉藤洋/著 杉浦範茂/著
氏家道男/著
近刊:ランダム

>> もっと見る

新着:ランダム(5日以内)

>> もっと見る


連載記事

発売してからどうです(仮)

>> もっと見る

※近刊検索デルタの書誌情報はopenBDのAPIを利用しています。